來(lái)源:網(wǎng)絡(luò )資源 2023-03-16 17:41:22
判定一個(gè)四邊形是特殊四邊形的步驟:
常見(jiàn)考法
(1)利用菱形、矩形、正方形的性質(zhì)進(jìn)行邊、角以及面積等計算;
(2)靈活運用判定定理證明一個(gè)四邊形(或平行四邊形)是菱形、矩形、正方形;
(3)一些折疊問(wèn)題;
(4)矩形與直角三角形和等腰三角形有著(zhù)密切聯(lián)系、正方形與等腰直角三角形也有著(zhù)密切聯(lián)系。所以,以此為背景可以設置許多考題。
誤區提醒
(1)平行四邊形的所有性質(zhì)矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性質(zhì)平行四邊形不一定具有,這點(diǎn)易出現混淆;
(2)矩形、菱形具有的性質(zhì)正方形都具有,而正方形具有的性質(zhì),矩形不一定具有,菱形也不一定具有,這點(diǎn)也易出現混淆;
(3)不能正確的理解和運用判定定理進(jìn)行證明,(如在證明菱形時(shí),把四條邊相等的四邊形是菱形誤解成兩組鄰邊相等的四邊形是菱形);(3)再利用對角線(xiàn)長(cháng)度求菱形的面積時(shí),忘記乘;(3)判定一個(gè)四邊形是特殊的平行四邊形的條件不充分。
【典型例題】(2010天門(mén)、潛江、仙桃)正方形ABCD中,點(diǎn)O是對角線(xiàn)DB的中點(diǎn),點(diǎn)P是DB所在直線(xiàn)上的一個(gè)動(dòng)點(diǎn),PE⊥BC于E,PF⊥DC于F.
(1)當點(diǎn)P與點(diǎn)O重合時(shí)(如圖①),猜測AP與EF的數量及位置關(guān)系,并證明你的結論;
(2)當點(diǎn)P在線(xiàn)段DB上(不與點(diǎn)D、O、B重合)時(shí)(如圖②),探究(1)中的結論是否成立?若成立,寫(xiě)出證明過(guò)程;若不成立,請說(shuō)明理由;
(3)當點(diǎn)P在DB的長(cháng)延長(cháng)線(xiàn)上時(shí),請將圖③補充完整,并判斷(1)中的結論是否成立?若成立,直接寫(xiě)出結論;若不成立,請寫(xiě)出相應的結論.
【解析】(1)AP=EF,AP⊥EF,理由如下:
連接AC,則AC必過(guò)點(diǎn)O,延長(cháng)FO交AB于M;
∵OF⊥CD,OE⊥BC,且四邊形ABCD是正方形,
∴四邊形OECF是正方形,
∴OM=OF=OE=AM,
∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,
∴△AMO≌△FOE,
∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,
故AP=EF,且AP⊥EF.
(2)題(1)的結論仍然成立,理由如下:
延長(cháng)AP交BC于N,延長(cháng)FP交AB于M;
∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,
∴四邊形MBEP是正方形,
∴MP=PE,∠AMP=∠FPE=90°;
又∵AB-BM=AM,BC-BE=EC=PF,且AB=BC,BM=BE,
∴AM=PF,
∴△AMP≌△FPE,
∴AP=EF,∠APM=∠FPN=∠PEF
∵∠PEF+∠PFE=90°,∠FPN=∠PEF,
∴∠FPN+∠PFE=90°,即AP⊥EF,
故AP=EF,且AP⊥EF.
(3)題(1)(2)的結論仍然成立;
如右圖,延長(cháng)AB交PF于H,證法與(2)完全相同
編輯推薦:
歡迎使用手機、平板等移動(dòng)設備訪(fǎng)問(wèn)中考網(wǎng),2023中考一路陪伴同行!>>點(diǎn)擊查看