1、圖形的軸對稱(chēng)
軸對稱(chēng):如果一個(gè)圖形沿一條直線(xiàn)折疊后,直線(xiàn)兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱(chēng)圖形,這條直線(xiàn)叫做對稱(chēng)軸。
軸對稱(chēng)圖形:①角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等。②線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等。③等腰三角形的“三線(xiàn)合一”。
軸對稱(chēng)的性質(zhì):對應點(diǎn)所連的線(xiàn)段被對稱(chēng)軸垂直平分,對應線(xiàn)段/對應角相等。
2、圖形的平移和旋轉
平移:①在平面內,將一個(gè)圖形沿著(zhù)某個(gè)方向移動(dòng)一定的距離,這樣的圖形運動(dòng)叫做平移。②經(jīng)過(guò)平移,對應點(diǎn)所連的線(xiàn)段平行且相等,對應線(xiàn)段平行且相等,對應角相等。
旋轉:①在平面內,將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉動(dòng)一個(gè)角度,這樣的圖形運動(dòng)叫做旋轉。②經(jīng)過(guò)旋轉,圖形商店每一個(gè)點(diǎn)都繞旋轉中心沿相同方向轉動(dòng)了相同的角度,任意一對對應點(diǎn)與旋轉中心的連線(xiàn)所成的角都是旋轉角,對應點(diǎn)到旋轉中心的距離相等。
3、圖形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A(yíng)/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那么A+C+…+M/B+D+…N=A/B。
黃金分割:點(diǎn)C把線(xiàn)段AB分成兩條線(xiàn)段AC與BC,如果AC/AB=BC/AC,那么稱(chēng)線(xiàn)段AB被點(diǎn)C黃金分割,點(diǎn)C叫做線(xiàn)段AB的黃金分割點(diǎn),AC與AB的比叫做黃金比(根號5-1/2)。
相似:①各角對應相等,各邊對應成比例的兩個(gè)多邊形叫做相似多邊形。②相似多邊形對應邊的比叫做相似比。
相似三角形:①三角對應相等,三邊對應成比例的兩個(gè)三角形叫做相似三角形。②條件:AAA、SSS、SAS。
相似多邊形的性質(zhì):①相似三角形對應高,對應角平分線(xiàn),對應中線(xiàn)的比都等于相似比。②相似多邊形的周長(cháng)比等于相似比,面積比等于相似比的平方。
圖形的放大與縮。孩偃绻麅蓚(gè)圖形不僅是相似圖形,而且每組對應點(diǎn)所在的直線(xiàn)都經(jīng)過(guò)同一個(gè)點(diǎn),那么這樣的兩個(gè)圖形叫做位似圖形,這個(gè)點(diǎn)叫做位似中心,這時(shí)的相似比又稱(chēng)為位似比。②位似圖形上任意一對對應點(diǎn)到位似中心的距離之比等于位似比。
C、圖形的坐標
平面直角坐標系:在平面內,兩條互相垂直且有公共原點(diǎn)的數軸組成平面直角坐標系。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸與Y軸統稱(chēng)坐標軸,他們的公共原點(diǎn)O稱(chēng)為直角坐標系的原點(diǎn)。他們分4個(gè)象限。XA,YB記作(A,B)。
D、證明
定義與命題:①對名稱(chēng)與術(shù)語(yǔ)的含義加以描述,作出明確的規定,也就是給出他們的定義。②對事情進(jìn)行判斷的句子叫做命題(分真命題與假命題)。③每個(gè)命題是由條件和結論兩部分組成。④要說(shuō)明一個(gè)命題是假命題,通常舉出一個(gè)離子,使之具備命題的條件,而不具有命題的結論,這種例子叫做反例。
公理:①公認的真命題叫做公理。②其他真命題的正確性都通過(guò)推理的方法證實(shí),經(jīng)過(guò)證明的真命題稱(chēng)為定理。③同位角相等,兩直線(xiàn)平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁?xún)冉腔パa,兩直線(xiàn)平行,反之亦然;內錯角相等,兩直線(xiàn)平行,反之亦然;三角形三個(gè)內角的和等于180度;三角形的一個(gè)外交等于和他不相鄰的兩個(gè)內角的和;三角心的一個(gè)外角大于任何一個(gè)和他不相鄰的內角。④由一個(gè)公理或定理直接推出的定理,叫做這個(gè)公理或定理的推論。
新初三快掃碼關(guān)注
中考網(wǎng)微信公眾號
每日推送學(xué)習技巧,學(xué)科知識點(diǎn)
助你迎接2020年中考!
歡迎使用手機、平板等移動(dòng)設備訪(fǎng)問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看