來(lái)源:網(wǎng)絡(luò )資源 作者:中考網(wǎng)整理 2019-07-18 20:04:07
1、歸納法
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。
2、幾何變換法
在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。
幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。
3、換元法
換元法是數學(xué)中一個(gè)非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱(chēng)為元,所謂換元法,就是在一個(gè)比較復雜的數學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。
4、判別式法與韋達定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a=?0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數的和與積,求這兩個(gè)數等簡(jiǎn)單應用外,還可以求根的對稱(chēng)函數,計論二次方程根的符號,解對稱(chēng)方程組,以及解一些有關(guān)二次曲線(xiàn)的問(wèn)題等,都有非常廣泛的應用。
5、待定系數法
在解數學(xué)問(wèn)題時(shí),若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關(guān)于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關(guān)系,從而解答數學(xué)問(wèn)題,這種解題方法稱(chēng)為待定系數法。它是中學(xué)數學(xué)中常用的方法之一。
6、構造法
在解題時(shí),我們常常會(huì )采用這樣的方法,通過(guò)對條件和結論的分析,構造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數、一個(gè)等價(jià)命題等,架起一座連接條件和結論的橋梁,從而使問(wèn)題得以解決,這種解題的數學(xué)方法,我們稱(chēng)為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學(xué)知識互相滲透,有利于問(wèn)題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結論相反的假設,然后,從這個(gè)假設出發(fā),經(jīng)過(guò)正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
歡迎使用手機、平板等移動(dòng)設備訪(fǎng)問(wèn)中考網(wǎng),2024中考一路陪伴同行!>>點(diǎn)擊查看